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It has been suggested on theoretical grounds that a vortex could be initiated in a 
cylindrical region of fluid, originally in solid rotation, by the horizontal mixing 
of angular momentum produced by external stirring. In  this paper various 
arguments for and against the mechanism are examined and their difficulties 
exposed. No firm conclusion is reached. A series of mathematical models of the 
mixing motions has been used, to bring out the differences between mechanical 
stirring and the agitation of a gas by random molecular motions. They suggest 
the introduction of a diffusion coefficient for angular momentum, to be detjer- 
mined empirically. These theoretical ideas are then applied to the interpretation 
of the results of a laboratory experiment which has been designed to test the 
proposed mechanism directly. 

A wide, flat tank of liquid was set up on a rotating table and stirred with a 
vertically oscillated grid, whose elements were much smaller than the width of 
the tank. A neutrally buoyant particle was used as a tracer of fluid motions, to 
measure relative circulation velocities and the properties of the turbulence. The 
motion observed was dominated by the loss of angular momentum to the walls 
and the grid, an effect which has not been taken into account in previous theoret- 
ical assessments of the effects of mixing of angular momentum. The relative 
circulation present was not significantly different from zero, and the limits of 
error of the measurements imply that the rate of diffusion of angular momentum 
is less than 5 yo of that for fluid particles, with 95 yo probability. 

1. Introduction 
Scorer (1965, 1966) has suggested that, when a cylindrical region of fluid is 

rotating about its axis and is stirred on a small scale by an external agency, a 
single large-scale vortex will tend to form in which the mean swirl velocity 
v(r)  relative to an inertial frame varies inversely as the distance r from the axis 
of rotation; i.e. the mean circulation is 

y = rV = constant. 

This is quite different from the equilibrium state of motion of an unstirred fluid, 

- 

(1) 

7 = Qr2, ( 2 )  

- 

where Q = constant. This suggestion has given rise to considerable unpublished 
discussion, particularly at  the Xymposium on "Concentrated Vortices at Ann 
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Arbour in July 1964 (Kuchemann 1965). It is not easy to make quantitative the 
theoretical arguments that have been put forward, by Scorer and others, in 
favour of a stirred fluid tending towards the state (l),  rather than state (2), but 
in view of the far-reaching nature of the conclusion, and the apparently favour- 
able experiments of Gough & Lynden-Bell (1968), a more precise investigation 
of possible mechanisms seems desirable. 

A superficially attractive argument is that the angular momentum per unit 
mass of a fluid particle about the axis of rotation is y = vr. The total angular 
momentum of any set of interacting fluid particles is a conserved quantity, and 
any conservative quantity is a priori uniform in a perfectly mixed state. The 
angular momentum is uniform in state (1) but not in state ( 2 ) .  Hence, given 
adequate externally-driven stirring, state (1) should be preferred. In  a uniformly 
rotating fluid a particle crossing the cylindrical surface of radius r travelling 
inwards comes from a region where the mean angular momentum 7 is larger, and 
fluctuations y’ about the mean are symmetrically distributed. Such particles 
apparently carry with them on the average an excess of angular momentum over 
the mean value at  r ,  and similarly outward moving particles carry a deficiency. 
The net result is apparently a down-gradient flux of angular momentum. This 
down-gradient flux has been expressed quantitatively in terms of a mixing 
length for the turbulence by Prandtl (1931). It tends to make 7 uniform, and 
vanishes only when it is so. 

One immediate puzzle about this reasoning arises from its generality. Why 
should the same conclusion not hold for the particles of a gas stirred by random 
thermal motions of the molecules (the reservoir of energy associated with these 
is much larger than that required to build up a vortex at low Mach number) ‘1 The 
second law of thermodynamics assures us that it cannot, but nevertheless it is 
important to appreciate exactly where the argument fails, so that the same fallacy 
should not be transferred to the more difficult case of a turbulent liquid. This is 
discussed in 52(d) .  Another obvious question is how the axis is located dynami- 
calIy . In  an incompressible homogeneous liquid with rigid boundaries, the onIy 
influence of a uniform rotation is through the Coriolis force. If the turbulence is 
also isotropic there is no preferred direction locally, and there is no obvious 
reason why the angular momentum which is mixed should be about the axis of 
rotation rather than about any other axis. 

Another argument relies on the familiar restoring force associated with in- 
finitesimal displacements from an axisymmetric state of motion in which 7 ( r )  
increases with r .  This force was first described by Rayleigh (1916), who showed 
Couette flows to be stable to axisymmetric inviscid disturbances. It also underlies 
non-axisymmetric Rossby waves in the atmosphere. The force may vanish for 
certain special classes of displacement (e.g. two-dimensional ones in a uniformly 
rotating flow), but when it is non-zero it always tends to restore a particle to its 
original radius. If, the argument runs, a fluid with such a mean circulation is 
stirred by an external agency which exerts no torque, work must be done by the 
external agency against this restoring force, and this work must appear as an 
increase in kinetic energy of the mean swirl. This should then increase until the 
restoring force vanishes, i.e. until the circulation 2n7(r) is independent of radius. 
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A similar approach was used by Prandtl (1931) to estimate the energy avail- 
able to drive turbulence in a swirling flow. 

It will be seen below that neither of these arguments can be accepted without 
major modification; their deceptive simplicity conceals substantial difficulties. 
However, neither can the possibility they raise be definitely ruled out. 

In  their pure form, the above arguments assume that there is no transfer of 
angular momentum from the container walls to the fluid, and they are not 
applicable in the region very near the axis in which the circulation and angular 
momentum must increase rapidly with radius and mixing is inhibited. Also it 
should be emphasized that the stirring envisaged here is on a scale small com- 
pared to the size of the container, and is not directly driving a mean meridional 
circulation. If there is an outward mean radial motion at one level, the fluid 
will tend to swirl less rapidly as it moves away from the axis of rotation, and it 
will have an anticyclonic circulation relative to the rotating container, whereas 
associated with inflow at another level will be a cyclonic vortex. If the outflow 
takes place near a rigidly rotating wall, and the inflow near a free surface, 
the anticyclonic circulation will be suppressed, and the vertically averaged 
velocity V will be larger than that for solid body rotation. 

When these ideas first came to our attention, some preliminary observations 
were made in a cylindrical container 22 cm in diameter and about 20 cm deep, 
This was put on a turn-table and set into solid rotation at  60 r.p.m. and then 
stirred by a double pass of a plane circular grid with a square mesh of 1-5 mm 
thick plexiglass strips 1 cm wide and spaced at 5 cm centres. The grid was not 
rotating relative to the laboratory and no rotoscope was available to view the 
motion relative to the rotating frame. As the turbulence induced by the stirring 
died away, marker particles both in suspension and floating on the surface indi- 
cated the appearance of one, or sometimes two, cyclonic vortices roughly along 
the axis of the cylinder. The interpretation of these observations is ambiguous. 
In  particular, it is not clear how much of the effect was due to a meridional 
circulation, or whether the observed vortex was an amalgamation of the small 
number of individual vortices associated with a less conspicuous region of more 
slowly rotating fluid elsewhere. However, these results pointed t o  the need for 
a more careful experiment, in which extraneous mechanisms which could affect 
the swirl were reduced to a minimum. In particular, it seemed important to make 
the horizontal scale of the tank much larger than that of the stirring motions. 

In  $ 2 of this paper various simple mathematical models of the stirring process 
are examined. These suggest that a basic anisotropy is necessary if the mean 
motion is to differ from solid body rotation, but that given suitable anisotropy 
a vortex can indeed be set up. They also suggest how the tendency to form a vortex 
may be quantified in terms of a diffusion coefficient, for angular momentum. This 
coefficient may reasonably be compared to the diffusivity of material particles 
in the random walk caused by the stirring, to  yield an ‘efficiency’ for the vortex 
generating process. If the mixing length for angular momentum were the same 
as for material particles the efficiency would be unity. In  $ $ 3 , 4  we report an 
experiment designed to measure the efficiency of a particular method of stirring, 
by means of an oscillating rigid grid. To within the sensitivity of our method we 

39-2 
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could detect no tendency for the mean motion to depart from solid body rotation, 
i.e. the efficiency was not significantly different from zero ( < i5 yo with 95 yo 
probability). 

Much of the theoretical discussion in this paper has probably appeared, in 
embryo at  least, elsewhere in the literature. The present objective is to collect 
together some of the arguments which can be put forward for and against vortex 
generation by random stirring, so that their strengths and weaknesses can be 
compared. Innumerable variations are possible, so the selection is a personal one. 
The treatment given is only a sketch and rigour is not attempted. 

2. Theoretical considerations 

The corresponding components of fluid velocity are (u’, G + v‘, w’), where 
Cylindrical polar co-ordinates ( r ,  8, z )  are taken in an inertial frame of reference. 

-~ - ~ 

zc’ = V J  = WI z 0. 

Averages are taken over a time long compared to the scale of the fluctuations 
(u‘, v‘, w’) induced by the stirring, but short compared to that for the develop- 
ment of substantial changes in the mean swirl Z(r, z, t ) .  In  the situation envisaged, 

v = Qr 

corresponding to rigid body rotation about the vertical axis. The length scale L 
of the fluctuations is substantially smaller than the scale r of the mean motion. 
The stirring is presumed strong, i.e. 

we have initially - 

QL < u’ (3) 

and to a first approximation independent of time and homogeneous in the hori- 
zontal plane. It is induced by random body forces P. We shall consider in turn a 
number of special cases. To begin with, the influence of solid boundaries and 
variations of mean quantities in the vertical will be ignored. 

(a )  Axisymrnetric motion in an  inviscid Jluid 

When stirring is random but axisymmetric (independent of 0, and FB = O ) ,  it 
seems very probable that mean vortex can be induced. In  an inviscid fluid, the 
angular momentum per unit mass of a ring moving radially 

y = (G+v’)r 

is then completely conserved, so that 

If at time t = 0 the whole fluid is rotating as a solid body, we know that 

yo = QY!. 

Subsequently the value of y at any point ( r ,x)  is determined by the original 
radius ro of the fluid particle present there. Even after many time-scales for the 
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fluctuations, because L/r < 1, the change in radius is almost everywhere small, 

and 

N Qr: - 2Q2r0(r - ro). (5) 

The outward mean flux of angular momentum crossing unit area of cylindrical 
surface of radius r is 

-- ay -- 
p' N y u' - --0 % b ' ( C .  I - r o ) .  

O clr 
- ~- 

N o w 2  vanishes, and 
-~ 

l a  
2 at 

-- .~ 

~ ' ( r  - r,,) = - - ( r  - 

Under the assumptions made here this is the rate of increase of the one-dimen- 
sional dispersion i ( r - r O ) 2  of a cloud of marked fluid particles originally at  
(ro, z )  but subject to different realizations of the velocity fluctuations. It is also 
equal to the horizontal diffusion coefficient K for a single small Lagrangian 
marker in the fluid, and is directly measurable. If genuine mixing is occurring it is 
definitely greater than zero. Thus there is a mean radial flux per unit area of 
angular momentum per unit mass equal to 

( b )  Axisymmetric motion with internal friction 

In the inviscid model considered in the previous paragraph the magnitude of 
the velocity fluctuations v' at a point would continue to increase indefinitely 
as the mixing progressed. To achieve a quasi-steady statistical state in which 2: 
changes slowly as the inward flux of angular momentum builds up a vortex, it  is 
necessary to allow some interchange of angular momentum between aring and its 
surroundings. This would inevitably be achieved by viscosity. The simplest 
assumption to illustrate the effect is to take 

9. = - h ( y - y )  
at (7)  

so that a ring is continually losing at  a constant rate the excess of its angular 
momentum above the mean value of its instantaneous surroundings. The total 
derivative dldt is construed as following a fluid particle. If h-l is comparable 
with the fluctuation timescale, it is permissible to ignore in dyldt the slow change 
ayjat compared with the effect u'(8ylar) of changes in position, and we have 

__ 

a ay - ( Y - Y ) + h ( Y - Y )  = - -u'. at at 
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This equation may be solved to give 
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where the integral is taken following a given particle. This shows that the in- 
stantaneous value of the angular momentum at a point depends predominantly 
on the more recent history of radial motions of the fluid particle which is in- 
stantaneously there, and departures from the local quasi-steady mean are fairly 
small. There is still, however, a mean radial flux of angular momentum of 
magnitude 

M = - -  ~ ( s )  e-hsds (9) 

where 

is the Lagrangian autocorrelation function for radial velocity. If h is large, the 
integral - u‘Z/h, whereas if h is small it N K ,  the particle diffusion coefficient 
introduced before. On any reasonable model, the integral is always positive and a 
significant fraction of K. There is then a substantial down-gradient flux of angular 
momentum, described by a diffusion coefficient E comparable to K and approxi- 
mately independent of position. 

S(s)  = u‘(t) u’(t - s )  

- 

(c) Mixing by expanding and contracting Jluid disks 

The axisymmetric motions considered above are very specialized, but other 
variations of the same general idea are possible. In  one of these, attention is 
concentrated on a small disk-shaped fluid element lying in the horizontal plane 
anywhere in the rotating mass. The disk of fluid will tend to rotate about a 
vertical axis with an angular velocity of the same sign as Q. If now it is distorted 
by the stirring so that it expands in the horizontal plane, the vertical vorticity 
decreases, the disk rotates more slowly, and the fluid particles more remote from 
the axis of the whole mass have a smaller swirl velocity than previously, whereas 
those particles which have moved nearer the axis swirl faster. On mixing with 
their new surroundings, the former particles tend to slow these down, the latter 
to speed them up. The result is an inward radial transfer of angular momentum. 
A fluid element which contracts in the horizontal plane, on the other hand, 
obtains an increased vertical vorticity, but the transfer of angular momentum 
has the same sign. 

It should be noticed that this argument assumes that during the expansion or 
contraction phase there is on the average no net pressure force (ap’/aO) on the 
element tending to alter its angular momentum as a whole. This possibility can 
be rigorously eliminated only for elements which are complete rings. 

(d  ) Non-axisymmetric stirring 

A simple model of a mixing process is one in which particles are repeatedly 
released with randomly distributed velocities, travel with those velocities for a 
short time 7 ,  and are then mixed again with their new surroundings. Such a model 
is really more appropriate for a gas consisting of discrete molecules, rather than a 
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liquid in which pressure forces act continuously, but it is similar to mixing length 
theories of turbulence. The result is included here because it illustrates cogently 
how the radial flux of angular momentum depends on the anisotropy of the 
mixing, and that when it is isotropic the flux does indeed vanish in a state of 
solid body rotation, rather than when the mean angular momentum is uniform. 

The central statistical assumption is that, if the components of velocity in 
cylindrical co-ordinates are (u’, V(r )  + w’, w’), then the probability distribution 
v(u‘, w’, w’, r )  for a particle at the time of release is an even function of u‘, w‘, w‘, 
so that all odd moments like uf,w’3,u’w’ vanish. It is also necessary that the 
number of particles per unit volume be adjusted so that there is no radial flux 
of mass. It is then fairly straightforward to show that there is an average radial 
flux of angular momentum per particle 

--- 

(rV) - ~ W ‘ ~ V  + O ( T ~ ) .  - 1  
If = 0, this reduces to the expression for axisymmetric stirring obtained in 

§ 2 (a) .  If = v’”, on the other hand, M vanishes if and only if r2(a/ar) (V/r) = 0, 
i.e. when there is solid body rotation. Even though the angular momentum per 
particle is constant during the motion, and the total is conserved upon mixing, 
the equilibrium state is not one of uniform angular momentum. This arises 
because the components of velocity of a particle travelling in a straight line vary 
with time t ,  being, to first order in t ,  

{u’ + (V + w’)2t/r, (V -t w’) ( 1  - u’t/r), w’), 

where u’, w‘, w‘ refer to the moment of release t = 0. The second component shows 
that the instantaneous angular momentum 

y = (9 + w’) (1 - u’t/r) ( r  + u’t) + O(t2) 

is conserved, whereas the first describes an apparent radial acceleration pro- 
portional to ( V + W ’ ) ~ .  Thus, even though at the moment of release as many 
particles with given v’ may be moving radially inwards as outwards (z = 0 ) ,  
it  does not remain so, because there is a systematic bias against the particles 
with large y moving radially inwards. This is a kinematic consequence of the 
curvature of the co-ordinate system. The bias counteracts the flux of angular 
momentum due to inward moving particles having originated in a region of 
larger 7. If 21’2 = then in a state of solid body rotation the effects precisely 
cancel. 

Although this model is oversimplified, it can easily be generalized to include 
mean radial pressure gradients, provided these act on particles in an unbiased 
manner. It also can describe a continuous liquid, provided the change in angular 
momentum of a fluid element due to the pressure forces acting on it can be 
modelled by a sequence of random step functions at regular intervals. Although 
this is certainly an inadequate picture of turbulent mixing, the model does show 
that the first argument of the introduction is deceptively simple and misleading. 
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( e )  A linear, isotropic Jluid 

Before we discuss the explicit model which is to be tested experimentally, we 
will consider another argument which shows that anisotropy of the mixing is 
important if a vortex is to be produced. Batchelor (1967) points out that if the 
stress tensor M i j  describing the mean transfer of angular momentum in a fluid 
is a linear function of the local mean velocity gradients only, 

and if the tensor aijkl describing the response of the fluid is isotropic, then we 
have by a well-known result 

aijkl = a Sij Sk1 + b Sik Sj, + c Sil S j k .  

Since, in the absence of couple stress, Mij is symmetric, we must have b = c and 
2Mii can only depend on the symmetric part of 8Zk/axl and not on the antisym- 
metric part which describes the rotation. Thus, in a state of solid body rotation, 
Mij should vanish. This argument is fundamental to the introduction of New- 
tonian viscosity in the Navier-Stokes equations, but should be applicable also 
on a larger scale. The key assumptions from the point of view of this paper are 
that the response of the stirred fluid to gradients of mean motion is both linear 
and isotropic. These are not a priori self evident, and although this argument 
imposes severe limitations on the type of mechanism which could produce a 
vortex, the existence of such a mechanism cannot be ruled out. 

Anisotropic mixing does appear to be vital in a completely different model 
treated by Kippenhahn (1963). He has considered convective motions in a 
spherical shell of gas, and concludes that differential rotation between the poles 
and the equator is only possible if the small-scale mixing is anisotropic. 

( f )  The inJluence of the Coriolis restoring force 

Finally, we will consider the second argument mentioned in the introduction. 
A particle in a uniformly rotating fluid displacedradially through a small distance 
(T experiences in general a restoring force of magnitude comparable with 4Q2 
times the displacement. If such a fluid is mixed, it was argued, work is done by 
the stirring forces against this restoring force, and this work must reappear as 
kinetic energy of the mean motion. This statement cannot be strictly valid, for 
in the absence of dissipative forces the fluctuations in velocity would go on 
increasing indefinitely. With dissipation, some a t  least of this kinetic energy 
is lost during the mixing of a fluid element with its surroundings, as we saw in 
the axisymmetric case described above. This mixing is essential for the radial 
transfer of angular momentum. Without detailed consideration of the whole 
energy budget it seems impossible to estimate how much of the input will 
reappear as an increase of the mean swirl. However, the restoring force invoked 
is a quadratic function of the rotation rate, and it is possible that it influences 
the turbulent structure in such a way that some anisotropy is introduced, evading 
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the negative conclusion of § 2 ( e ) .  Thus a radial transfer of angular momentum 
cannot be ruled out. 

(9) Theoretical conclusions 

In the opinion of the present authors the theoretical discussion given here is 
inconclusive. The first argument described in the introduction (and Prandtl’s 
reasoning) is fallacious, the second argument is not rigorous. The possibility of 
forced stirring causing the formation of a vortex in an initially uniformly rotating 
fluid cannot be ruled out, but neither has it been shown that a method of stirring 
which is not preferentially orientated relative to the local radial direction can 
lead to a vortex. Hence an empirical test is required, though it must be remem- 
bered that a single experiment can only be conclusive if it yields a positive result. 
If (as here) no vortex is observed, it could be that the method of stirring is 
inappropriate. Further experiments are desirable. 

3. Experimental considerations 
( a )  The working hypothesis 

In  order to measure the strength of the tendency towards vortex formation, it is 
essential to have a theoretical framework within which the results can be ana- 
lysed. For a fluid in which pressure forces are continuously acting on particles, 
it is not obvious that the model of 2 ( d )  is relevant. Nevertheless, the expression 
(10) contains the suggestion that under different circumstances the radial 
angular momentum flux can be proportional to ay/ar or to r2(a/ar) ( @ / r ) .  It appears 
reasonable to take as our hypothesis, which may be tested experimentally, 
a momentum flux per unit mass which includes both these terms in the form 

where E and S are positive constants of order unity or less. Although two terms 
are introduced here, it will be shown that the conditions in our experiments are 
such that the second is negligible, and no information is obtained about the 
magnitude of SK.  The coefficient of the first term, k = E K ,  on the other hand, is a 
diffusion coefficient for angular momentum, the magnitude of which may be 
assessed from the experiments. c measures the ratio of the effectiveness of the 
mixing in transferring angular momentum to that for the transfer of fluid par- 
ticles, and for want of a better name is called here the ‘efficiency factor’. 

At this stage we should point out that so far no mention has been made of 
variations in V or of the fluctuation statistics with distance z along the axis of 
rotation, nor has the presence of bounding surfaces been allowed for. In  our 
experiment a solid grid was rotating with constant angular velocity CI and there 
was a rapid transfer of relative angular momentum (V - Qr)r  to the grid and 
container. This of course varied markedly with z, but for the small relative 
velocities envisaged here it seems reasonable to assume that the vertically 
averaged values of 5 obey a, linear decay law 

av 
- at = -h(E- Q r ) ,  
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where h is a constant determined by the turbulence. The decay time h-l was 
measured; it is comparable with the fluctuation time scale and is very much 
shorter than the time for a mean relative swirl due to a radial diffusion of angular 
momentum to grow in the absence of this transfer. 

The final form of the hypothesis made here is that an expression like equation 
(13) holds also for the vertically averaged values of M ,  K and V, even in the 
presence of the grid and horizontal bounding surfaces. Consideration of the 
angular momentum balance for a ring of radius I? then shows that 

This may be re-written in terms of the relative velocity V - SZr as 

(15) 

Now in our experiment hr2/K was very large, except very near the axis, and the 
relative velocities were very much smaller than the absolute ones. The first 
and second terms on the right-hand side of equation (15) are negligible compared 
to the third, and after a time of order h-l a steady state is reached in which there 
is a local balance between the radial diffusion of absolute angular momentum 
and its transfer to the container at  a rate proportional to the relative velocity, 

Thus, except for a region of width of order L around the axis and any side walls 
to the container, the mean motion predicted by theory is a slow relative vortex, 
of magnitude directly proportional to the diffusion coefficient k = CK for angular 
momentum. The remainder of this paper is devoted to describing the experi- 
ments and results, which lead to the determination of an upper limit for the 
efficiency factor c. 

( b )  Design of the apparatus 

The preliminary observations suggested that it was desirable to stir homo- 
geneously on a scale substantially smaller than the radius of the container, and 
t o  reduce the mean meriodinal circulation to a minimum. A steady-state ex- 
periment, rather than a transient one, also seemed preferable. With these criteria 
in mind, the experimental tank chosen was a steel drum 7 1  cm in diameter, 
filled to a depth of 12 crn with liquid having a free surface. Kerosene was used 
throughout as the working fluid (for historical reasons which need not concern 
us here). This was stirred mechanically with a grid of plastic strips 1.2 cm 
thick and 1.0 cm wide, arranged in a horizontal plane with spacing 5.0 cm. The 
grid was supported on thin rods from a frame above it, and oscillated vertically 
in simple harmonic motion through the middle of the liquid layer (see figure 1) .  
This design, with the grid itself and its support made as rigid as possible, was 
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decided on after preliminary runs had revealed a spurious circulation attribu- 
table to the ‘pumping action’ caused by the flexing of a thinner grid. 

The whole apparatus was mounted on the rotating table previously built a t  
Woods Hole by Dr A. J. Faller. This turntable permits accurately controlled 
rotation up to 15 r.p.m. and can be viewed by a synchronouslyrotating television 
camera mounted vertically above it. Measurements of the displacements on the 

Base board 

FIGURE 1. Schematic elevation of the experimental tank, showing the mechanism 
used t o  oscillate the grid. 

television screen provide a sensitive indicator of velocities relative to the rotating 
tank. There was no detectable variation of the properties of the turbulence with 
rotation rate Q, although the inverse Rossby number QL/U based on the grid 
spacing L ( =  5 cm) and the r.m.s. grid velocity U (typically 10 cmlsec) varied 
between zero and 0.5. 

A consequence of the experimental method adopted is the large damping of 
any mean swirl relative to the grid, because of the turbulent transfer of angular 
momentum to the grid. When the grid was stationary the decay time of such 
large-scale swirl was of the order of minutes, but while the grid was being 
oscillated it was a few seconds. However, the lack of control and probable 
meridional circulation associated with stirring by other methods which were 
considered, such as thermal convection or the injection of air bubbles, seemed 
far more serious. 

( c )  The technique of velocity measurement 

It is clear from equation (16) that several measures of fluid velocity are required. 
All of these were obtained by tracking a small neutrally buoyant marker particle, 
a plastic sphere about 6mm in diameter, which was free to move vertically 
through the grid bars, sampling the whole depth as well as the area of the tank. 
Provided long enough times are considered for the particle to visit every region 
in the container, the time mean of any quantity following a fluid particle is 
equal to the volume mean of the same quantity. 
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For the measurement of angular displacement an annular region was marked 
out on the television screen, corresponding to radii of 7.3 em and 22.0 cm in the 
fluid. The centre and edge of the container were excluded because (16) breaks 
down there, and because of the difficulty of defining angular displacements of 
particles moving across the centre. The angular co-ordinate of the marker par- 
ticle was recorded (generally to within +. 10') for each 3 sec interval at  the 
beginning of which the image was within the annulus. With the velocity distribu- 
tion described by (16), the volume average of the mean angular velocity in an 
annular region between radii c and d is 

(17) 
T 4k 
q5 = - Q In (d/c) /&(d2 - c2)  

h 

relative to the rotating frame. The periods over which this was taken (of order 
of an hour) were such that the area sampling was very satisfactory; the observed 
times spent inside and outside the annulus (see table 1) corresponded closely to  
the known volume ratio (35 yo inside the annulus). 

The decay constant h was too large to be estimated by observing directly the 
exponential decay to zero of a swirl. Instead, particles were observed during a 
period when the rotation rate Q of the tank was being altered at a constant rate 
0, through a total range [Q]. During this process, the solution of equation (14) 
gives 

Thus the mean angular displacement during the spin-up process should be 
independent of radius and equal to 

1 
[$I = -n [Q]. 

This equation will of course only be valid if Q/[Q]h < 1, which was true in our 
experiments. 

For the measurement of horizontal mixing, the television screen was divided 
into 400 numbered squares, each corresponding to 3-7 em square in the fluid. 
At 3 sec intervals the square containing the particle was noted. From sets of 
twenty random walks the mean square displacement was computed, r being 
the displacement, after time t ,  of a particle from its initial position. The equation 

(191 
then gave a value for K .  

Our final result will be stated as an upper limit on the ratio k / ~  which has been 
defined as the efficiency E of the mixing process for angular momentum. Com- 
bining ( 17), ( 18) and ( 19) we ha,ve 

All the terms in this expression have been measured directly; the detailed results 
will be given in the next section. 
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4. Experimental results 
(a)  Relative angular velocity 

The stirring rate was held near 1-3 c p  and the vertical excursion of the grid at  
5 cm for this and all the other quantitative experiments. The measurements of 
the mean relative angular motion in the annulus between c = 7.3 em and 
d = 22-0 cm were conducted at  a basic rotation rate of 12 r.p.m. The total rota- 
tion in each of four runs was small, as shown in table 1, not significantly different 
from zero or from that in two control runs with the tank at rest. The significance 
was assessed by regarding the relative rotation in each 3sec interval as an 
independent measure of the angular motion, and evaluating the variance of the 
deviations from zero. The total number of observations and the sum of the 
squares of the deviations are shown in the table. The final result for the four runs 
at 12 r.p.m. taken together is d/Q = 0.0007 rt 0.0015, the limit quoted being the 
standard error of the mean. 

Experiment 
no. 

1 
2 
3 
4 
5 
6 

Rotation 
rate R 
(r.p.m.) 

12 
12 
12 
12 
0 
0 

Number of 
3 sec 

intervals in 
annulus 

344 
404 
412 
498 
263 
390 

Total 
relative 
rotation 

(20" units) 

- 5.0 
+ 1.0 
- 17.5 
+ 8.5 
+ 5.5 

+ 13.0 

Sum of 
squares of 
deviations 
(20" units)e 

169 
166 
130 
209 
133 
183 

Proportion of 
total time 
in annulus 

41 
30 

(%) 

41 
32 
37 

TABLE 1. The measurements of relative angular motion, made by following a particle 
over many 3 sec intervals, at  the beginning of which the particle was within the annulus 

Also shown in the last column of table 1 is the proportion of the total time 
which the marker particle spent in the annulus. This information was used to 
assess how well the particle sampled the volume of the tank. 

( b )  The decay rate 

In  accordance with equation (18) the angular motion of a particle during a 
period of acceleration is required. In  practice, an average over 30 runs was 
obtained, during which Q was changed with constant acceleration through the 
range 0-12 r.p.m. or back again. The spin-up time was restricted to be about 
30 see by the design characteristics of the rotating table. Only those runs were 
included for which the particle both began and ended in the annulus used in the 
relative velocity measurements. The mean value obtained in this way is 

h = - [sZ]/[$] = 0.74 0.07 s-'. 

This method implies that we can assume that h is independent of the rotation 
rate. For the range of stirring Rossby numbers used this is probably a good first 
approximation. The other measured parameter of the turbulence K does seem to 
be independent of 52 within the error of observation. 
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(c)  Diffusion coeficient for particles 

The mean-square deviations of particles from their initial position near the 
centre was measured in four separate runs, two without rotation and one each 
at  6 r.p.m. and 12 r.p.m. During each run, averages of r2 were computed over 20 
particles at  3 sec intervals, taking our zero 3 sec from the beginning of stirring 
so that the turbulence would be properly established through the whole run. The 

t (see) 

FIGURE 2. A typical plot of mean dispersion as a function of time (run 3 in table 2). The 
line drawn gives equal weight to the slopes determined from the individual points. 

- 
Experiment Rotation T 2 / t  = 4 K  

no. rate (r.p.m.) em2 s-l S.E. of mean 

A 0 7.8 1.0 
B 0 6.8 0.8 
C 6 7.2 1.1 
D 12 6.6 0.5 

TABLE 2. The measurements of dispersion of fluid particles. Each run is an average over 
20 observations of a marker particle started near the centre of the tank 

mean-square displacement was proportional to time up to about 40 sec, as shown 
in figure 2 for a typical run. After this it increased more slowly, probably because 
a significant proportion of the particles was affected by the outer boundary of 
the tank a t  r = a = 35 cm. For very long runs, 2 should be constant and equal 
to &a2. 

The values of 4~ = G/ t  obtained using the linear range of the four experiments 
are shown in table 2. The limits quoted are standard errors of the mean, computed 
by supposing that the whole history of each particle defines an independent 
estimate ofp/ t  and giving equal weight to the dispersion at  each of the recorded 
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times. The values are not significantly different at the different rotation rates, 
SO we can lump all the results together and use the mean value 

- 

4~ = r2/t = 7.1 f 0.5 cm2 s-l. 

(d  ) Calculation of the eficiency 
Finally, we use (25) to calculate the efficiency for mixing of angular momentum. 
The numerical values obtained above, and the standard errors of the means, are 
grouped together for convenience in table 3. The final value is 

c = 0-014 0.031; (21) 

note that this standard error depends on the standard error of d/Q and on the 
mean values of the other factors, but hardly at  all on the other standard errors. 
Assuming a Gaussian distribution of q$/Q we may state (21) in alternative ways 
according to the significance level adopted. A convenient interpretation is the 
following: the transfer coeficient for angular momentum in our experiment is not 
signiJicantly different from zero, and is  less than 5 yo of that forJEuid particles, with 
probability 95 %. 

Mean 0.0007 0.74 7.1 196 
Standard error f 0.0015 f 0.07 k 0.5 k 10 (estimated) 

TABLE 3. Summary of our experimental results 

5. Final remarks 
The experiment described preceded in point of time much of the theoretical 

analysis, and although it seems to provide a satisfactory test of the rather vague 
suggestions described in the introduction, it is clear in retrospect that there are 
several modifications of the experimental techniques which it would be useful 
to try in the future. It would clearly be desirable to reduce the resistance of the 
grid, and its damping effect on the swirl. This presented difficulties when the 
aim was to produce homogeneous stirring, isotropic in the horizontal, but it is 
less of a problem when one considers anisotropic stirring, which is suggested by 
$ 2  ( e ) .  An array of concentric rings with equal radial spacing would be a suitable 
geometry both to introduce radial-circumferential anisotropy and reduce the 
resistance to swirl. A positive effect of this stirring would then be expected. 

Another mechanism for the production of a relative angular motion by stirring 
a rotating vessel, different from that considered here, has been proposed by 
Gough & Lynden-Bell (1968). They present experimental evidence for such a 
swirl produced in a thin layer of fluid by convective stirring, and also discuss 
why their mechanism should not be effective for our case of mechanical stirring. 
The essential point is that the time needed for vorticity to diffuse to the boundary, 
in their model, is just not available when the field of motion is being rapidly 
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changed by external stirring. With this mechanism in mind, an experiment where 
the fluid is stirred uniformly by one double pass of a grid, which is then removed 
from the fluid, again becomes an attractive possibility. 

The experimental work reported here was carried out while both authors were 
visiting the Woods Hole Oceanographic Institution, and was supported in part 
by NSF grant no. GP317. We are grateful to Mr Robert Fra,zel for his assistance 
with the design and construction of the equipment. This paper is Contribution 
no. 1578 from the Woods Hole Oceanographic Institution. 
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